Mass Asymmetric Fission Barriers for Neutron-Rich and Neutron-poor Compound Nuclei ^{76,70}Se T. F. Fan[‡], K. X. Jing, L. Phair, K. Tso^{*}, M. McMahan, K. Hanold, L.G. Moretto, and G. J. Wozniak Nuclear Science Division, Lawrence Berkeley National Laboratory Earlier work [1,2] by this group studied the mass aymmetric, conditional-fission barriers for the compound nuclei $^{75}\mathrm{Br}$ and $^{90,94,98}\mathrm{Mo}$. In this work, complex fragment emission (4 < Z < 21) has been studied at over six bombarding energies for $^{76}\mathrm{Se}$ and $^{70}\mathrm{Se}$ produced in the reactions $^{64,58}\mathrm{Ni}$ + $^{12}\mathrm{C}$, representing neutronrich (n/p=1.24) and neutron-poor (n/p=1.06) nuclei of atomic number Z=34. Excitation functions have been constructed for each Z value. Mass asymmetric barriers have been extracted by fitting the measured excitation functions with a transition state formalism. The experiment was performed at the 88-Inch Cyclotron of LBNL. To create the excited compound nuclei 76,70 Se, a carbon target (1.0 mg/cm²) was bombarded with beams of 64,58 Ni at several energies ranging from 5.8 MeV/u to 14.1 MeV/u. The use of reverse kinematics provides a clear signature for the production of complex fragments by a binary-decay mechanism [3]. Eight $E-\Delta E$ telescopes, each consisting of a gas ΔE followed by a position-sensitive silicon detector, provided the energy, atomic number, and spatial location of each detected fragment. Velocity spectra were obtained for each fragment Z-species. The isotropic emission of complex fragments in the reaction plane can be seen from the decay of the two nuclei 76,70 Se. FIG. 1. Dependence of the total integrated cross section on the center-of-mass energy for emission of complex fragments from the reaction $^{64}{\rm Ni}+^{12}{\rm C}$. The curves are fits. The number to the right indicates the factor by which each curve and the set of experimental points are multiplied. The $d\sigma/d\theta$ distributions in the frame of the source system were determined for all fragment Z-values. Angleintergrated cross sections for the isotropic component were determined from the averaged $d\sigma/d\theta$ of the flat regions in the angular distributions. The charge distributions of complex fragments associated with fusion-like reactions at all the bombarding energies have been determined. The corresponding excitation functions for ⁶⁴Ni + ¹²C are shown in fig. 1. Each excitation function was fitted with a conditional barrier B_Z and the ratio of the level-density parameter at the saddle point to that of the ground state (a_Z/a_n) . Fig. 2 illustrates the macroscopic conditional barriers and the ratios of level density parameters a_Z/a_n for the compound nuclei 76,70 Se. Comparison with macroscopic nuclear models and further analysis are underway. FIG. 2. Preliminary values of the mass-asymmetric fission barriers (B_Z^{macro}) , which corresponds to the mass difference between the saddle point and the spheric liquid drop, and the ratio of the level density parameters (a_Z/a_n) for compound nuclei 76,70 Se, extracted from the fitting of the excitation functions. - [‡] Permanent address: Institute for Heavy Ion Physics, Department of Technical Physics, Peking University, Beijing 100871, China. - * Current Address: CES, Rm 1201, Tai Yau Building, 181 Johnston Road, Wanchai, Hong Kong. - [1] D. Delis et al., Nucl. Phys. A534, 403 (1991). - [2] K. X. Jing et al., to be published, (LBNL-40779). - [3] R. J. Charity et al., Nucl. Phys. A476, 516(1988).